How AI and Machine Learning Can Revolutionize Drug Safety Monitoring – RTInsights

  • Lauren
  • August 18, 2020
  • Comments Off on How AI and Machine Learning Can Revolutionize Drug Safety Monitoring – RTInsights

The life sciences industry can optimize data insights to improve pharmacovigilance processes using AI, ML, and Natural Language Processing.

Clinical trials are necessary to bring new treatments to patients.
Well-crafted trials are key to ensuring the safety of patients and the ultimate
viability of new drugs. Contrary to what many might assume, the drug
development cycle does not end once a product has been approved and brought to

Life science organizations are constantly monitoring the
efficacy and safety of a drug once it is being used by patients – this practice
is commonly known in the life science industry as pharmacovigilance (PV). PV is
an integral
part of the drug development process, as well as ongoing monitoring. This entails
the collection and analysis of adverse events (AEs) – these are undesirable
experiences following a patient’s use of a given drug. By identifying,
analyzing, and reporting AEs to relevant authorities, life science
organizations are complying with best practices as well as regulatory
requirements to meet their ethical obligations to ensure patient safety.

See also: 4 Ways Real-time Big Data Improves Pharma’s Bottom Line

A New Approach to Identifying Adverse Events

Approximately 80%
of healthcare data resides in unstructured formats like emails and paper
documents. Today, unstructured data on AEs needs to be aggregated and
correlated from disparate and expansive data sources, including social
media, email, online communities, and other digital formats. Currently, most
PV and safety professionals need to review AE data by going through inefficient
manual processes. This can slow down clinical trials and potentially delay the
delivery of new medications to patients.

The introduction of artificial intelligence (AI),
machine learning (ML), and natural language processing (NLP) tools to the life
sciences industry is making it possible to take these large, unstructured data
sets and turn them into actionable insights at unprecedented speeds. Investment
in AI and ML in healthcare sciences is expected to grow to $8
billion by 2022. This investment signals a dramatic
increase in the quantity and quality of drugs on the market, fueled by a need
for faster time to market for new drug therapies and a new approach to PV.

The Role of AI and ML in

AI and ML are especially useful in reading, processing, and extrapolating large, unstructured data sets. The life sciences industry is still in the early stages of integrating AI-driven solutions. When implemented effectively, AI tools have delivered significant time and cost savings, reduced risks, and freed up pharmacovigilance professionals from wasting time on highly manual, routine tasks. These tools are especially vital for managing increasing PV workloads and making the best use of the human assets on PV teams, at a time when talent scarcity makes it difficult to keep these teams fully staffed.

AI implementation can seem daunting at first – but can be
made more manageable when addressed in stages. Here are just a few of the ways in
which AI/ML can improve operational efficiency in PV. AI/ML, along with NLP,
unearths data and surfaces it quickly. As a result, this reduces the time PV
leaders need to identify AE patterns, including severity and frequency of AEs. There
are tools available today that use AI/ML and NLP to:

Speed literature searches for relevant
informationScan social media across the globe to pinpoint
AEsListen and absorb audio calls (e.g., into a call
center) for mentions of a company or drugTranslate large amounts of information from one
language into anotherTransform scanned documents on AEs into
actionable informationRead and interpret case narratives with minimal
human guidanceDetermine whether any patterns in adverse
reaction data are providing new, previously unrealized information that could improve
patient safety Automate case follow-ups to verify information
and capture any missing dataImproving Essential Drug Safety Monitoring Processes

As PV advances with the use of AI/ML, the ability to follow long-term
safety implications and viability for certain treatments will become more
turnkey. Elevating this work from manual data review and processing to AI-based
insights will save time in identifying trends from AEs. These trends are key to
understanding which population segments could best benefit from (or should avoid)
a certain treatment and even help pave a path for future insights that could
yield new treatments and cures.

AI/ML will never replace human experience and expertise –
however, when applied effectively, these tools can help to accelerate the
ability to process and analyze data. The resulting actionable insights can help
bring drugs to market faster than ever before, and much more safely.