Breaking News

The 37 Best Machine Learning Courses on Udemy to Consider – Solutions Review

The editors at Solutions Review have compiled this list of the best machine learning courses on Udemy to consider if you’re looking to grow your skills.
Machine learning involves studying computer algorithms that improve automatically through experience. It is a sub-field of artificial intelligence where machine learning algorithms build models based on sample (or training) data. Once a predictive model is constructed it can be used to make predictions or decisions without being specifically commanded to do so. Machine learning is now a mainstream technology with a wide variety of uses and applications. It is especially prevalent in the fields of business intelligence and data management.
With this in mind, we’ve compiled this list of the best machine learning courses on Udemy if you’re looking to grow your skills for work or play. Udemy is one of the top online education platforms in the world with more than 130,000 courses, expert instruction, and lifetime access that allows you to learn on your own schedule. As you can see below, we broke the best machine learning courses on Udemy down into categories based on the recommended proficiency level. Each section also features our inclusion criteria. Click GO TO TRAINING to learn more and register.

Best Machine Learning Courses on Udemy for Beginners
Note: We included courses with more than 800 reviews and a rating of 4.2 stars or better.
Machine Learning, Data Science and Deep Learning with Python
Description: If you’ve got some programming or scripting experience, this course will teach you the techniques used by real data scientists and machine learning practitioners in the tech industry – and prepare you for a move into this hot career path. This comprehensive machine learning tutorial includes over 100 lectures spanning 14 hours of video, and most topics include hands-on Python code examples you can use for reference and for practice. Each concept is introduced in plain English, avoiding confusing mathematical notation and jargon. It’s then demonstrated using Python code you can experiment with and build upon, along with notes you can keep for future reference.

Introduction to Machine Learning for Data Science
Description: In this introductory course, you will be guided through wilderness of machine learning for data science.  Accessible to everyone, this introductory course not only explains machine learning, but where it fits in the “technosphere” around us, why it’s important now, and how it will dramatically change our world today and for days to come. This course is a great primer for starting Python or R, introducing the fundamentals that you need before going hands-on.

Cluster Analysis and Unsupervised Machine Learning in Python
Description: In this course, you will first talk about clustering. This is where instead of training on labels, you will try to create your own. You’ll do this by grouping together data that look alike. Next, the instructors will go into Gaussian mixture models and kernel density estimation, where they will talk about how to “learn” the probability distribution of a set of data. All the algorithms they’ll talk about in this course are staples in machine learning and data science, so if you want to know how to automatically find patterns in your data with data mining and pattern extraction, without needing someone to put in manual work to label that data, then this course is for you.

Machine Learning with Javascript
Description: There are many courses on machine learning already available. The instructor built this course to be the best introduction to the topic.  No subject is left untouched, and students never leave any area in the dark.  If you take this course, you will be prepared to enter and understand any sub-discipline in the world of machine learning. Requirements include a basic understanding of terminal and command line usage, and the ability to read basic math equations.

Data Science: Supervised Machine Learning in Python
Description: This course focuses on “how to build and understand”, not just “how to use”. Anyone can learn to use an API in 15 minutes after reading some documentation. It’s not about “remembering facts”, it’s about “seeing for yourself” via experimentation. It will teach you how to visualize what’s happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.

An Introduction to Machine Learning for Data Engineers
Description: This course is part of a series on data engineering and will show you the basics of machine learning for data engineers. The module is geared toward answering questions for the Google Certified Data Engineering exam. This is not a general course or introduction to machine learning. This is a very focused course for learning the concepts you’ll need to know to pass the certification.

Python for Data Science and Machine Learning beginners
Description: This course, which is instructed by a data scientist with 4-years of experience, is designed for absolute beginners to data science and machine learning. It covers each aspect of Python languages required in data science, machine learning and deep learning. This course is for beginners in Python development, programming, data science, and machine learning. Python for Data Science has a nearly perfect 4.9 stars.

Machine Learning Practical Workout | 8 Real-World Projects
Description: The purpose of this course is to provide students with knowledge of key aspects of deep and machine learning techniques in a practical, easy and fun way. The course provides students with practical hands-on experience in training deep and machine learning models using real-world datasets. This course covers several techniques in a practical manner as well. The course is targeted towards students wanting to gain a fundamental understanding of deep and machine learning models. Basic knowledge of programming is recommended.

Best Machine Learning Courses on Udemy for Intermediate
Note: We included courses with more than 1,000 reviews and a rating of 4.2 stars or better.
AWS Certified Machine Learning Specialty 2021 – Hands On!
Description: This certification prep course is taught by Frank Kane, who spent nine years working at Amazon itself in the field of machine learning. Frank took and passed this exam on the first try, and knows exactly what it takes for you to pass it yourself. Joining Frank in this course is Stephane Maarek, an AWS expert and popular AWS certification instructor on Udemy. In addition to the 9-hour video course, a 30-minute quick assessment practice exam is included that consists of the same topics and style as the real exam. You’ll also get four hands-on labs that allow you to practice what you’ve learned, and gain valuable experience in model tuning, feature engineering, and data engineering.

Deployment of Machine Learning Models
Description: This is the first and only online course where you can learn how to deploy machine learning models. In this course, you will learn every aspect of how to put your models in production. The course is comprehensive and yet easy to follow. Throughout this course, you will learn all the steps and infrastructure required to deploy machine learning models professionally. In this course, you will have at your fingertips, the sequence of steps that you need to follow to deploy a machine learning model, plus a project template with full code, that you can adapt to deploy your own models.

Machine Learning Practical: 6 Real-World Applications
Description: Machine Learning Practical brings the best industry professionals together. Each presenter has a unique style which is determined by their experience. Students will need to adjust on the fly to complete the course. The module will demystify how real data science projects like instead of looking at only polished samples which are only introducing you to the matter but not providing the real experience. This course provides a hands-on approach to real-life challenges and covers exactly what you need to succeed in the real world of data science.

Building Recommender Systems with Machine Learning and AI
Description: Learn how to build recommender systems from one of Amazon’s pioneers in the field. Frank Kane spent over nine years at Amazon, where he managed and led the development of many of Amazon’s personalized product recommendation technologies. this course is very hands-on; you’ll develop your own framework for evaluating and combining many different recommendation algorithms together, and you’ll even build your own neural networks using Tensorflow to generate recommendations from real-world movie ratings from real people.

A Beginner’s Guide To Machine Learning with Unity
Description: In this course, Penny de Byi introduces the popular machine learning techniques of genetic algorithms and neural networks using her internationally acclaimed teaching style and knowledge from a Ph.D in game character AI and over 25 years of experience working with games and computer graphics. Throughout the course, you will follow along with hands-on workshops designed to teach you about the fundamental machine learning techniques, distilling the mathematics in a way that the topic becomes accessible to the most noob of novices.

Feature Selection for Machine Learning
Description: In this course, you will learn how to select the variables in your data set and build simpler, faster, more reliable, and more interpretable machine learning models. This is the most comprehensive online course in variable selection. You will learn a huge variety of feature selection procedures used worldwide in different organizations and in data science competitions, to select the most predictive features. At the end of the course, you will have a variety of tools to select and compare different feature subsets and identify the ones that return the simplest, yet most predictive machine learning model. This will allow you to minimize the time to put your predictive models into production.

Best Machine Learning Courses on Udemy for Experts
Note: We included courses with more than 500 reviews and a rating of 4.3 stars or better.
AWS Certified Machine Learning Specialty Full Practice Exam
Description: This practice exam offers a realistic, full-length simulation of what you can expect in the AWS MLS-C01 exam. It’s not a “brain dump,” but a complete, 65-question, 3-hour practice exam with original questions of the same style, topics, difficulty, and breakdown of the real exam. It’s a great test of your readiness before you decide to invest in the real exam, and a great way to see what sorts of topics the exam will touch on. The instructors also include a 10-question warmup test that will give you a rough idea of your readiness.

Machine Learning and AI: Support Vector Machines in Python
Description: In this course, the instructors take a very methodical, step-by-step approach to build up all the theory you need to understand how the SVM really works. You are going to use Logistic Regression as a starting point, which is one of the very first things you learn about as a student of machine learning. So if you want to understand this course, just have a good intuition about Logistic Regression, and by extension have a good understanding of the geometry of lines, planes, and hyperplanes.

AWS Machine Learning Certification Exam|2020 Complete Guide
Description: With more than 500 slides and over 50 practice questions, this course is by far the most comprehensive course on the market that provides students with the foundational knowledge to pass the AWS Machine Learning Certification exam like a pro! This course covers the most important concepts without any fillers or irrelevant information. The module is designed for developers and data scientists wanting to get certified in AWS Machine Learning.

Best Machine Learning Courses on Udemy for All Levels
Note: We included courses with more than 500 reviews and a rating of 4.2 stars or better.
Machine Learning A-Z: Hands-On Python & R In Data Science
Description: This course was designed by two professional data scientists to share knowledge and help you learn complex theories, algorithms, and coding libraries in a simple way. The instructors will walk you step-by-step through the field of machine learning. With every tutorial, you will develop new skills and improve your understanding of this challenging yet lucrative sub-field of data science. The module is also packed with practical exercises that are based on real-life examples. And as a bonus, this course includes both Python and R code templates which you can download and use on your own projects.

Python for Data Science and Machine Learning Bootcamp
Description: This comprehensive course will be your guide to learning how to use the power of Python to analyze data, create beautiful visualizations, and use powerful machine learning algorithms. The module is designed for both beginners with some programming experience or experienced developers looking to make the jump to data science. It also features more than 100 HD video lectures and detailed code notebooks for every lecture.

Data Science and Machine Learning Bootcamp with R
Description: This comprehensive course is comparable to other data science bootcamps that usually cost thousands of dollars, but now you can learn all that information at a fraction of the cost! With over 100 HD video lectures and detailed code notebooks for every lecture, this is one of the most full-featured modules for data science and machine learning on Udemy. Instructors will teach you how to program with R, how to create amazing data visualizations, and how to use machine learning with R!

Complete Machine Learning & Data Science Bootcamp 2021
Description: Learn data science and machine learning from scratch, get hired, and have fun along the way with the most modern, up-to-date data science course on Udemy.  This course is focused on efficiency: never spend time on confusing, out of date, incomplete Machine Learning tutorials anymore. You will get access to all the code, workbooks and templates (Jupyter Notebooks) on Github, so that you can put them on your portfolio right away. If you already know how to program, you can dive right in and skip the section where instructors teach you Python from scratch. If you are completely new, instructors take you from the very beginning and actually teach you Python and how to use it in the real world for various projects.

Scala and Spark for Big Data and Machine Learning
Description: Scala and Spark are two of the most in-demand skills right now, and with this course, you can learn them quickly and easily. This course comes with full projects including topics such as analyzing financial data or using machine learning to classify eCommerce customer behavior. The instructors teach the latest methodologies of Spark 2.0 so you can learn how to use SparkSQL, Spark DataFrames, and Spark’s MLlib. After completing this course you will feel comfortable putting Scala and Spark on your resume!

Bayesian Machine Learning in Python: A/B Testing
Description: You’ll learn the fundamental tools of the Bayesian method – through the example of A/B testing – and then you’ll be able to carry those Bayesian techniques to more advanced machine learning models in the future. The things you’ll learn in this course are not only applicable to A/B testing, but rather, we’re using A/B testing as a concrete example of how Bayesian techniques can be applied. This course is for students and professionals with a technical background who want to learn Bayesian machine learning techniques to apply to their data science work.

The Complete Machine Learning Course with Python
Description: You’ll go from beginner to extremely high-level and your instructor will build each algorithm with you step by step on screen. By the end of the course, you will have trained machine learning algorithms to classify flowers, predict house price, identify handwritings or digits, identify staff that is most likely to leave prematurely, detect cancer cells, and much more! Although having some basic Python experience would be helpful, no prior Python knowledge is necessary as all the codes will be provided and the instructor will be going through them line-by-line and you get friendly support in the Q&A area.

Unsupervised Machine Learning Hidden Markov Models in Python
Description: This course follows directly from the course Unsupervised Machine Learning for Cluster Analysis, where you can learn how to measure the probability distribution of a random variable. In this course, you’ll learn to measure the probability distribution of a sequence of random variables. This course focuses on “how to build and understand”, not just “how to use”. Anyone can learn to use an API in 15 minutes after reading some documentation. It’s not about “remembering facts”, it’s about “seeing for yourself” via experimentation. All of the materials of this course can be downloaded and installed for free.

Python & Machine Learning for Financial Analysis
Description: This course is divided into three main parts covering Python programming fundamentals, financial analysis in Python, and AI/ML application in finance and banking. The course contains mini-challenges and coding exercises in almost every video so you will learn in a practical and easy way. You will also build more than 6 full practical projects that you can add to your portfolio of projects to showcase your future employer during job interviews. There is no prior experience required, even if you have never used Python or any programming language before.

Complete 2020 Data Science & Machine Learning Bootcamp
Description: Welcome to the Complete Data Science and Machine Learning Bootcamp, the only course you need to learn Python and get into data science. At over 40+ hours, this Python course is without a doubt the most comprehensive data science and machine learning course available online. Even if you have zero programming experience, this course will take you from beginner to mastery. Instructors take you step-by-step through video tutorials and teach you everything you need to know to succeed as a data scientist and machine learning professional. The course includes over 35 hours of HD video tutorials and builds your programming knowledge while solving real-world problems.

AWS SageMaker – Certified Machine Learning Specialty Exam
Description: Learn about cloud-based machine learning algorithms, how to integrate with your applications, and certification preparation. The module features hands-on labs, guidance on how to deploy a notebook instance on the AWS Cloud, insight into algorithms provided by SageMaker service, and training on optimizing and deploying models. The ideal student for this course is willing to learn, participate in the course Q&A forum when you need help, and you need to be comfortable coding in Python.

Solutions Review participates in affiliate programs. We may make a small commission from products purchased through this resource.

Follow Tim

Timothy King
Timothy is Solutions Review’s Senior Editor. He is a recognized thought leader and influencer in enterprise BI and data analytics. Timothy has been named a top global business journalist by Richtopia. Scoop? First initial, last name at solutionsreview dot com.

Follow Tim

Latest posts by Timothy King (see all)

Share this: