Photonics for artificial intelligence and neuromorphic computing




1.

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

ADS 

Google Scholar 


2.

Wu, Y. et al. Google’s neural machine translation system: bridging the gap between human and machine translation. Preprint at https://arxiv.org/abs/1609.08144 (2016).




3.

Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018).

ADS 

Google Scholar 




4.

Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014).

ADS 

Google Scholar 




5.

Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018).

Google Scholar 




6.

Keyes, R. W. Optical logic-in the light of computer technology. Opt. Acta 32, 525–535 (1985).

ADS 

Google Scholar 


7.

Prucnal, P. R. & Shastri, B. J. Neuromorphic Photonics (CRC, 2017).




8.

Magesan, E., Gambetta, J. M., Corcoles, A. D. & Chow, J. M. Machine learning for discriminating quantum measurement trajectories and improving readout. Phys. Rev. Lett. 114, 200501 (2015).

ADS 

Google Scholar 




9.

Radovic, A. et al. Machine learning at the energy and intensity frontiers of particle physics. Nature 560, 41–48 (2018).

ADS 

Google Scholar 




10.

Duarte, J. et al. Fast inference of deep neural networks in FPGAs for particle physics. J. Instrum. 13, P07027 (2018).

Google Scholar 




11.

Kates-Harbeck, J., Svyatkovskiy, A. & Tang, W. Predicting disruptive instabilities in controlled fusion plasmas through deep learning. Nature 568, 526–531 (2019).

ADS 

Google Scholar 




12.

Ferreira de Lima, T. et al. Machine learning with neuromorphic photonics. J. Lightwave Technol. 37, 1515–1534 (2019).

ADS 

Google Scholar 




13.

Han, J., Jentzen, A. & Weinan, E. Solving high-dimensional partial differential equations using deep learning. Proc. Natl Acad. Sci. USA 115, 8505–8510 (2018).

MathSciNet 
MATH 

Google Scholar 




14.

Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

ADS 

Google Scholar 


15.

Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proc. 44th Annual International Symposium on Computer Architecture 1–12 (Association for Computing Machinery, 2017).




16.

Hughes, T. W., Minkov, M., Shi, Y. & Fan, S. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica 5, 864–871 (2018).

ADS 

Google Scholar 




17.

Tait, A. N. et al. Demonstration of multivariate photonics: blind dimensionality reduction with integrated photonics. J. Lightwave Technol. 37, 5996–6006 (2019).

ADS 

Google Scholar 


18.

Huang, C. et al. Demonstration of photonic neural network for fiber nonlinearity compensation in long-haul transmission systems. In Optical Fiber Communication Conference Th4C–6 (Optical Society of America, 2020).




19.

Zhang, S. et al. Field and lab experimental demonstration of nonlinear impairment compensation using neural networks. Nat. Commun. 10, 3033 (2019).

ADS 

Google Scholar 




20.

Kravtsov, K. S., Fok, M. P., Prucnal, P. R. & Rosenbluth, D. Ultrafast all-optical implementation of a leaky integrate-and-fire neuron. Opt. Express 19, 2133–2147 (2011).

ADS 

Google Scholar 




21.

Tait, A. N., Nahmias, M. A., Shastri, B. J. & Prucnal, P. R. Broadcast and weight: an integrated network for scalable photonic spike processing. J. Lightwave Technol. 32, 4029–4041 (2014).

Google Scholar 




22.

Shainline, J. M., Buckley, S. M., Mirin, R. P. & Nam, S. W. Superconducting optoelectronic circuits for neuromorphic computing. Phys. Rev. Appl. 7, 034013 (2017).

ADS 

Google Scholar 




23.

Bangari, V. et al. Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs). IEEE J. Sel. Top. Quantum Electron. 26, 7701213 (2020).

Google Scholar 




24.

Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

ADS 

Google Scholar 




25.

Goodman, J. W., Dias, A. R. & Woody, L. M. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. Opt. Lett. 2, 1–3 (1978).

ADS 

Google Scholar 




26.

Goodman, J. W., Leonberger, F. J., Kung, S.-Y. & Athale, R. A. Optical interconnections for VLSI systems. Proc. IEEE 72, 850–866 (1984).

ADS 

Google Scholar 




27.

Miller, D. A. B. Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE 88, 728–749 (2000).

Google Scholar 




28.

Psaltis, D. & Farhat, N. Optical information processing based on an associative-memory model of neural nets with thresholding and feedback. Opt. Lett. 10, 98–100 (1985).

ADS 

Google Scholar 




29.

Soref, R. & Bennett, B. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).

ADS 

Google Scholar 




30.

Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7, 7430 (2017).

ADS 

Google Scholar 




31.

Bogaerts, W. & Chrostowski, L. Silicon photonics circuit design: methods, tools and challenges. Laser Photon. Rev. 12, 1700237 (2018).

ADS 

Google Scholar 




32.

Nozaki, K. et al. Femtofarad optoelectronic integration demonstrating energy-saving signal conversion and nonlinear functions. Nat. Photon. 13, 454–459 (2019).

ADS 

Google Scholar 




33.

Nahmias, M. A. et al. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 7701518 (2020).

Google Scholar 




34.

Ríos, C. et al. In-memory computing on a photonic platform. Sci. Adv. 5, eaau5759 (2019).

ADS 

Google Scholar 




35.

Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).

ADS 

Google Scholar 




36.

Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

Google Scholar 




37.

Tait, A., Ferreira de Lima, T., Nahmias, M., Shastri, B. & Prucnal, P. Continuous calibration of microring weights for analog optical networks. Photon. Technol. Lett. 28, 887–890 (2016).

ADS 

Google Scholar 




38.

Tait, A. N. et al. Microring weight banks. IEEE J. Sel. Top. Quantum Electron. 22, 312–325 (2016).

ADS 

Google Scholar 




39.

Shi, B., Calabretta, N. & Stabile, R. Deep neural network through an InP SOA-based photonic integrated cross-connect. IEEE J. Sel. Top. Quantum Electron. 26, 7701111 (2020).

Google Scholar 




40.

Xu, X. et al. Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks. Laser Photon. Rev. 14, 2000070 (2020).

ADS 

Google Scholar 




41.

Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).

ADS 

Google Scholar 




42.

Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

MathSciNet 
MATH 

Google Scholar 




43.

Shainline, J. M. et al. Superconducting optoelectronic loop neurons. J. Appl. Phys. 126, 044902 (2019).

ADS 

Google Scholar 




44.

Chiles, J., Buckley, S. M., Nam, S. W., Mirin, R. P. & Shainline, J. M. Design, fabrication, and metrology of 10 × 100 multi-planar integrated photonic routing manifolds for neural networks. APL Photon. 3, 106101 (2018).

ADS 

Google Scholar 




45.

Buckley, S. et al. All-silicon light-emitting diodes waveguide-integrated with superconducting single-photon detectors. Appl. Phys. Lett. 111, 141101 (2017).

ADS 

Google Scholar 




46.

Harris, N. C. et al. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express 22, 10487–10493 (2014).

ADS 

Google Scholar 




47.

Jayatilleka, H. et al. Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters. Opt. Express 23, 25084–25097 (2015).

ADS 

Google Scholar 




48.

Tait, A. N. et al. Feedback control for microring weight banks. Opt. Express 26, 26422–26443 (2018).

ADS 

Google Scholar 




49.

Patel, D. et al. Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator. Opt. Express 23, 14263 (2015).

ADS 

Google Scholar 




50.

Komljenovic, T. et al. Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol. 34, 20–35 (2016).

ADS 

Google Scholar 




51.

He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).

ADS 

Google Scholar 




52.

Sorianello, V. et al. Graphene–silicon phase modulators with gigahertz bandwidth. Nat. Photon. 12, 40–44 (2018).

ADS 

Google Scholar 




53.

Gholipour, B. et al. Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing. Adv. Opt. Mater. 3, 635–641 (2015).

MathSciNet 

Google Scholar 




54.

Goodman, J. W. Fan-in and fan-out with optical interconnections. Opt. Acta 32, 1489–1496 (1985).

ADS 
MathSciNet 

Google Scholar 




55.

Nahmias, M. A., Shastri, B. J., Tait, A. N. & Prucnal, P. R. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing. IEEE J. Sel. Top. Quantum Electron. 19, 1800212 (2013).

Google Scholar 




56.

Romeira, B. et al. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors. Opt. Express 21, 20931–20940 (2013).

ADS 

Google Scholar 




57.

Tait, A. N. et al. Silicon photonic modulator neuron. Phys. Rev. Appl. 11, 064043 (2019).

ADS 

Google Scholar 




58.

Amin, R. et al. ITO-based electro-absorption modulator for photonic neural activation function. APL Mater. 7, 081112 (2019).

ADS 

Google Scholar 




59.

George, J. K. et al. Neuromorphic photonics with electro-absorption modulators. Opt. Express 27, 5181–5191 (2019).

ADS 

Google Scholar 




60.

Nahmias, M. A. et al. An integrated analog O/E/O link for multi-channel laser neurons. Appl. Phys. Lett. 108, 151106 (2016).

ADS 

Google Scholar 




61.

Williamson, I. A. D. et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 7700412 (2020).

Google Scholar 




62.

McCaughan, A. N. et al. A superconducting thermal switch with ultrahigh impedance for interfacing superconductors to semiconductors. Nat. Electron. 2, 451–456 (2019).

Google Scholar 




63.

Mourgias-Alexandris, G. et al. An all-optical neuron with sigmoid activation function. Opt. Express 27, 9620–9630 (2019).

ADS 

Google Scholar 




64.

Hill, M., Frietman, E. E. E., de Waardt, H., Khoe, G.-D. & Dorren, H. All fiber-optic neural network using coupled SOA based ring lasers. IEEE Trans. Neural Netw. 13, 1504–1513 (2002).

Google Scholar 




65.

Rosenbluth, D., Kravtsov, K., Fok, M. P. & Prucnal, P. R. A high performance photonic pulse processing device. Opt. Express 17, 22767–22772 (2009).

ADS 

Google Scholar 




66.

Sebastian, A. et al. Tutorial: brain-inspired computing using phase-change memory devices. J. Appl. Phys. 124, 111101 (2018).

ADS 

Google Scholar 




67.

Selmi, F. et al. Relative refractory period in an excitable semiconductor laser. Phys. Rev. Lett. 112, 183902 (2014).

ADS 

Google Scholar 




68.

Peng, H. T. et al. Neuromorphic photonic integrated circuits. IEEE J. Sel. Top. Quant. Electron. 24, 6101715 (2018).

Google Scholar 




69.

Romeira, B., Avo, R., Figueiredo, J. M. L., Barland, S. & Javaloyes, J. Regenerative memory in time-delayed neuromorphic photonic resonators. Sci. Rep. 6, 19510 (2016).

ADS 

Google Scholar 




70.

Shastri, B. J. et al. Spike processing with a graphene excitable laser. Sci. Rep. 6, 19126 (2016).

ADS 

Google Scholar 




71.

Coomans, W., Gelens, L., Beri, S., Danckaert, J. & Van der Sande, G. Solitary and coupled semiconductor ring lasers as optical spiking neurons. Phys. Rev. E 84, 036209 (2011).

ADS 

Google Scholar 




72.

Brunstein, M. et al. Excitability and self-pulsing in a photonic crystal nanocavity. Phys. Rev. A 85, 031803 (2012).

ADS 

Google Scholar 




73.

Robertson, J., Deng, T., Javaloyes, J. & Hurtado, A. Controlled inhibition of spiking dynamics in VCSELS for neuromorphic photonics: theory and experiments. Opt. Lett. 42, 1560–1563 (2017).

ADS 

Google Scholar 




74.

Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

ADS 
MathSciNet 
MATH 

Google Scholar 




75.

Stewart, T. C. & Eliasmith, C. Large-scale synthesis of functional spiking neural circuits. Proc. IEEE 102, 881–898 (2014).

Google Scholar 




76.

Bueno, J. et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica 5, 756–760 (2018).

ADS 

Google Scholar 




77.

Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

ADS 
MathSciNet 
MATH 

Google Scholar 




78.

Zuo, Y. et al. All-optical neural network with nonlinear activation functions. Optica 6, 1132–1137 (2019).

ADS 

Google Scholar 




79.

Xu, S., Wang, J., Wang, R., Chen, J. & Zou, W. High-accuracy optical convolution unit architecture for convolutional neural networks by cascaded acousto-optical modulator arrays. Opt. Express 27, 19778–19787 (2019).

ADS 

Google Scholar 




80.

Mehrabian, A., Miscuglio, M., Alkabani, Y., Sorger, V. J. & El-Ghazawi, T. A Winograd-based integrated photonics accelerator for convolutional neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 6100312 (2020).

Google Scholar 




81.

McMahon, P. L. et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 354, 614–617 (2016).

ADS 

Google Scholar 




82.

Roques-Carmes, C. et al. Heuristic recurrent algorithms for photonic Ising machines. Nat. Commun. 11, 249 (2020).

ADS 

Google Scholar 


83.

Tang, P. T. P., Lin, T.-H. & Davies, M. Sparse coding by spiking neural networks: convergence theory and computational results. Preprint at https://arxiv.org/abs/1705.05475 (2017).




84.

Davies, M. Benchmarks for progress in neuromorphic computing. Nat. Mach. Intell. 1, 386–388 (2019).

Google Scholar 




85.

Maass, W. Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10, 1659–1671 (1997).

Google Scholar 




86.

Peng, H. et al. Temporal information processing with an integrated laser neuron. IEEE J. Sel. Top. Quantum Electron. 26, 5100209 (2020).

Google Scholar 




87.

Robertson, J., Hejda, M., Bueno, J. & Hurtado, A. Ultrafast optical integration and pattern classification for neuromorphic photonics based on spiking VCSEL neurons. Sci. Rep. 10, 6098 (2020).

ADS 

Google Scholar 




88.

Chakraborty, I., Saha, G., Sengupta, A. & Roy, K. Toward fast neural computing using all-photonic phase change spiking neurons. Sci. Rep. 8, 12980 (2018).

ADS 

Google Scholar 




89.

Fok, M. P., Tian, Y., Rosenbluth, D. & Prucnal, P. R. Pulse lead/lag timing detection for adaptive feedback and control based on optical spike-timing-dependent plasticity. Opt. Lett. 38, 419–421 (2013).

ADS 

Google Scholar 




90.

Toole, R. et al. Photonic implementation of spike-timing-dependent plasticity and learning algorithms of biological neural systems. J. Lightwave Technol. 34, 470–476 (2016).

ADS 

Google Scholar 




91.

Xiang, S. et al. STDP-based unsupervised spike pattern learning in a photonic spiking neural network with VCSELs and VCSOAs. IEEE J. Sel.Top. Quantum Electron. 25, 1700109 (2019).

Google Scholar 




92.

Larger, L. et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt. Express 20, 3241–3249 (2012).

ADS 

Google Scholar 




93.

Paquot, Y. et al. Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012).

Google Scholar 




94.

Duport, F., Schneider, B., Smerieri, A., Haelterman, M. & Massar, S. All-optical reservoir computing. Opt. Express 20, 22783–22795 (2012).

ADS 

Google Scholar 




95.

Brunner, D., Soriano, M. C., Mirasso, C. R. & Fischer, I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013).

ADS 

Google Scholar 




96.

Vandoorne, K. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014).

ADS 

Google Scholar 




97.

Brunner, D. et al. Tutorial: Photonic neural networks in delay systems. J. Appl. Phys. 124, 152004 (2018).

ADS 

Google Scholar 


98.

Brunner, D., Soriano, M. C. & der Sande, G. V. Photonic Reservoir Computing (De Gruyter, 2019).




99.

Antonik, P., Marsal, N., Brunner, D. & Rontani, D. Human action recognition with a large-scale brain-inspired photonic computer. Nat. Mach. Intell. 1, 530–537 (2019).

Google Scholar 




100.

Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

ADS 

Google Scholar 




101.

Stojanovic, V. et al. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited]. Opt. Express 26, 13106 (2018).

ADS 

Google Scholar 




102.

Jha, A. et al. Lateral bipolar junction transistor on a silicon photonics platform. Opt. Express 28, 11692–11704 (2020).

ADS 

Google Scholar 




103.

Giewont, K. et al. 300-mm monolithic silicon photonics foundry technology. IEEE J. Sel. Top. Quantum Electron. 25, 8200611 (2019).

Google Scholar 




104.

Zhou, Z., Yin, B. & Michel, J. On-chip light sources for silicon photonics. Light Sci. Appl. 4, e358 (2015).

ADS 

Google Scholar 




105.

Song, B., Stagarescu, C., Ristic, S., Behfar, A. & Klamkin, J. 3d integrated hybrid silicon laser. Opt. Express 24, 10435–10444 (2020).

ADS 

Google Scholar 


106.

Mack, M. et al. Luxtera’s silicon photonics platform for transceiver manufacturing. In 2014 International Conference on Solid State Devices and Materials 506–507 (Luxtera, Inc., 2014).




107.

Billah, M. R. et al. Hybrid integration of silicon photonics circuits and inp lasers by photonic wire bonding. Optica 5, 876–883 (2018).

ADS 

Google Scholar 




108.

Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nat. Photon. 4, 511–517 (2010).

ADS 

Google Scholar 




109.

Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photon. 10, 307–311 (2016).

ADS 

Google Scholar 




110.

Berggren, K. et al. Roadmap on emerging hardware and technology for machine learning. Nanotechnology 32, 012002 (2021).

ADS 

Google Scholar 




111.

Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature 558, 60–67 (2018).

ADS 

Google Scholar 




112.

Li, C. et al. Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 1, 49–57 (2019).

Google Scholar 




113.

Sze, V., Chen, Y., Yang, T. & Emer, J. S. Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105, 2295–2329 (2017).

Google Scholar 




114.

Cheng, Z. et al. Device-level photonic memories and logic applications using phase-change materials. Adv. Mater. 30, 1802435 (2018).

Google Scholar 




115.

Zhang, Y. et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 10, 4279 (2019).

ADS 

Google Scholar 




116.

Cheng, Z., Ríos, C., Pernice, W. H. P., Wright, C. D. & Bhaskaran, H. On-chip photonic synapse. Sci. Adv. 3, e1700160 (2017).

ADS 

Google Scholar 




117.

Bogaerts, W. et al. Silicon microring resonators. Laser Photon. Rev. 6, 47–73 (2012).

ADS 

Google Scholar 




118.

Schrauwen, J., Van Thourhout, D. & Baets, R. Trimming of silicon ring resonator by electron beam induced compaction and strain. Opt. Express 16, 3738 (2008).

ADS 

Google Scholar 




119.

Prorok, S., Petrov, A. Y., Eich, M., Luo, J. & Jen, A. K.-Y. Trimming of high-Q-factor silicon ring resonators by electron beam bleaching. Opt. Lett. 37, 3114 (2012).

ADS 

Google Scholar 




120.

Milosevic, M. M. et al. Ion implantation in silicon for trimming the operating wavelength of ring resonators. IEEE J. Sel. Top. Quantum Electron. 24, 8200107 (2018).

Google Scholar 




121.

Harris, N. C. et al. Linear programmable nanophotonic processors. Optica 5, 1623–1631 (2018).

ADS 

Google Scholar 




122.

Perez, D., Gasulla, I., Mahapatra, P. D. & Capmany, J. Principles, fundamentals, and applications of programmable integrated photonics. Adv. Opt. Photon. 12, 709–786 (2020).

Google Scholar 




123.

Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

ADS 

Google Scholar 




124.

Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

ADS 

Google Scholar 




125.

Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

ADS 

Google Scholar 




126.

Turner, E. H. High-frequency electro-optic coefficients of lithium niobate. Appl. Phys. Lett. 8, 303–304 (1966).

ADS 

Google Scholar 




127.

Wang, C., Zhang, M., Stern, B., Lipson, M. & Loncar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26, 1547–1555 (2018).

ADS 

Google Scholar 




128.

Mercante, A. J. et al. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. Opt. Express 24, 15590–15595 (2016).

ADS 

Google Scholar 




129.

Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

ADS 

Google Scholar 




130.

Sun, J. et al. A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning. J. Lightwave Technol. 37, 110–115 (2019).

ADS 

Google Scholar 




131.

Patel, D., Samani, A., Veerasubramanian, V., Ghosh, S. & Plant, D. V. Silicon photonic segmented modulator-based electro-optic dac for 100 gb/s pam-4 generation. IEEE Photon. Technol. Lett. 27, 2433–2436 (2015).

ADS 

Google Scholar 


132.

Meng, J., Miscuglio, M., George, J. K., Babakhani, A. & Sorger, V. J. Electronic bottleneck suppression in next-generation networks with integrated photonic digital-to-analog converters. Adv. Photon. Res. https://doi.org/10.1002/adpr.202000033 (2021).




133.

Gelens, L et al. Excitability in semiconductor microring lasers: experimental and theoretical pulse characterization. Phys. Rev. A 82, 063841 (2010).

ADS 

Google Scholar 




134.

Beri, S. et al. Excitability in optical systems close to Z2-symmetry. Phys. Lett. A 374, 739–743 (2010).

ADS 
MATH 

Google Scholar 




135.

Bogaerts, W. & Rahim, A. Programmable photonics: an opportunity for an accessible large-volume PIC ecosystem. IEEE J. Sel. Top. Quantum Electron. 26, 8302517 (2020).

Google Scholar