Breaking News

Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms | Scientific Reports – Nature.com

Shiri, J. & Kişi, Ö. Application of artificial intelligence to estimate daily pan evaporation using available and estimated climatic data in the Khozestan Province (South Western Iran). J. Irrig. Drain. Eng. 137, 412–425 (2011).
Google Scholar 
Gundalia, M. J. & Dholakia, M. B. Estimation of pan evaporation using mean air temperature and radiation for monsoon season in Junagadh region. Int. J. Eng. Res. Appl. 3, 64–70 (2013).
Google Scholar 
Fan, J., Wu, L., Zhang, F., Xiang, Y. & Zheng, J. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. J. Hydrol. 542, 923–937 (2016).ADS 

Google Scholar 
Feng, Y., Jia, Y., Zhang, Q., Gong, D. & Cui, N. National-scale assessment of pan evaporation models across different climatic zones of China. J. Hydrol. 564, 314–328 (2018).ADS 

Google Scholar 
Chen, Y., He, L., Li, J. & Zhang, S. Multi-criteria design of shale-gas-water supply chains and production systems towards optimal life cycle economics and greenhouse gas emissions under uncertainty. Comput. Chem. Eng. 109, 216–235 (2018).CAS 

Google Scholar 
Wang, Q., Wang, W., Zhong, Z., Wang, H. & Fu, Y. Variation in glomalin in soil profiles and its association with climatic conditions, shelterbelt characteristics, and soil properties in poplar shelterbelts of Northeast China. J. For. Res. 31, 279–290 (2020).CAS 

Google Scholar 
Allawi, M. F. et al. Reservoir evaporation prediction modeling based on artificial intelligence methods. Water 11, 1226 (2019).
Google Scholar 
Morton, F. I. Evaporation and Climate: A Study in Cause and Effect, Scientific Series No. 4 (International Water Branch, Department Energy, Mines Resource, 1968).
Google Scholar 
Vicente-Serrano, S. M. et al. A comparison of temporal variability of observed and model-based pan evaporation over Uruguay (1973–2014). Int. J. Climatol. 38, 337–350 (2018).
Google Scholar 
Fan, J. et al. Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions. Energy 144, 903–914 (2018).
Google Scholar 
Wu, L. et al. Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction. Comput. Electron. Agric. 168, 105115 (2020).
Google Scholar 
Keshtegar, B., Piri, J. & Kisi, O. A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method. Comput. Electron. Agric. 127, 120–130 (2016).
Google Scholar 
Kişi, Ö. Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks. Hydrol. Process. Int. J. 23, 213–223 (2009).ADS 

Google Scholar 
Arunkumar, R. & Jothiprakash, V. Reservoir evaporation prediction using data-driven techniques. J. Hydrol. Eng. 18, 40–49 (2013).
Google Scholar 
Quinn, R., Parker, A. & Rushton, K. Evaporation from bare soil: Lysimeter experiments in sand dams interpreted using conceptual and numerical models. J. Hydrol. 564, 909–915 (2018).ADS 

Google Scholar 
Moeeni, H. & Bonakdari, H. Impact of normalization and input on ARMAX-ANN model performance in suspended sediment load prediction. Water Resour. Manage. 32, 845–863 (2018).
Google Scholar 
Myronidis, D., Ioannou, K., Fotakis, D. & Dörflinger, G. Streamflow and hydrological drought trend analysis and forecasting in Cyprus. Water Resour. Manage. 32, 1759–1776 (2018).
Google Scholar 
Wang, W., Chau, K., Xu, D. & Chen, X.-Y. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour. Manage. 29, 2655–2675 (2015).
Google Scholar 
Ghamariadyan, M. & Imteaz, M. A. A wavelet artificial neural network method for medium-term rainfall prediction in Queensland (Australia) and the comparisons with conventional methods. Int. J. Climatol. 41, E1396–E1416 (2021).
Google Scholar 
Aziz, M. A., Imteaz, M., Choudhury, T. A. & Phillips, D. Applicability of artificial neural network in hydraulic experiments using a new sewer overflow screening device. Australas. J. Water Resour. 17, 77–86 (2013).
Google Scholar 
Ghorbani, M. A., Jabehdar, M. A., Yaseen, Z. M. & Inyurt, S. Solving the Pan Evaporation Process Complexity Using the Development of Multiple Mode of Neurocomputing Models (2021).Sudheer, K. P., Gosain, A. K., Mohana Rangan, D. & Saheb, S. M. Modelling evaporation using an artificial neural network algorithm. Hydrol. Process. 16, 3189–3202 (2002).ADS 

Google Scholar 
Abed, M. M., El-Shafie, A. & Osman, S. A. B. Creep predicting model in masonry structure utilizing dynamic neural network. J. Comput. Sci. 6, 597 (2010).
Google Scholar 
Ashrafzadeh, A., Ghorbani, M. A., Biazar, S. M. & Yaseen, Z. M. Evaporation process modelling over northern Iran: Application of an integrative data-intelligence model with the krill herd optimization algorithm. Hydrol. Sci. J. 64, 1843–1856 (2019).
Google Scholar 
Castellano-Méndez, M., González-Manteiga, W., Febrero-Bande, M., Prada-Sánchez, J. M. & Lozano-Calderón, R. Modelling of the monthly and daily behaviour of the runoff of the Xallas river using Box-Jenkins and neural networks methods. J. Hydrol. 296, 38–58 (2004).ADS 

Google Scholar 
Ashrafzadeh, A., Malik, A., Jothiprakash, V., Ghorbani, M. A. & Biazar, S. M. Estimation of daily pan evaporation using neural networks and meta-heuristic approaches. ISH J. Hydraul. Eng. 26, 421–429 (2020).
Google Scholar 
Malik, A. et al. Modeling monthly pan evaporation process over the Indian central Himalayas: Application of multiple learning artificial intelligence model. Eng. Appl. Comput. Fluid Mech. 14, 323–338 (2020).ADS 

Google Scholar 
Abudu, S., Cui, C., King, J. P., Moreno, J. & Bawazir, A. S. Modeling of daily pan evaporation using partial least squares regression. Sci. China Technol. Sci. 54, 163–174 (2011).ADS 

Google Scholar 
Tabari, H., Marofi, S. & Sabziparvar, A.-A. Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig. Sci. 28, 399–406 (2010).
Google Scholar 
Keskin, M. E. & Terzi, Ö. Artificial neural network models of daily pan evaporation. J. Hydrol. Eng. 11, 65–70 (2006).
Google Scholar 
Kişi, Ö. Evolutionary neural networks for monthly pan evaporation modeling. J. Hydrol. 498, 36–45 (2013).ADS 

Google Scholar 
Deo, R. C., Samui, P. & Kim, D. Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stoch. Environ. Res. Risk Assess. 30, 1769–1784 (2016).
Google Scholar 
Falamarzi, Y., Palizdan, N., Huang, Y. F. & Lee, T. S. Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs). Agric. Water Manage. 140, 26–36 (2014).
Google Scholar 
Wang, L., Kisi, O., Zounemat-Kermani, M. & Li, H. Pan evaporation modeling using six different heuristic computing methods in different climates of China. J. Hydrol. 544, 407–427 (2017).ADS 

Google Scholar 
Malik, A., Kumar, A. & Kisi, O. Monthly pan-evaporation estimation in Indian central Himalayas using different heuristic approaches and climate based models. Comput. Electron. Agric. 143, 302–313 (2017).
Google Scholar 
Tezel, G. & Buyukyildiz, M. Monthly evaporation forecasting using artificial neural networks and support vector machines. Theor. Appl. Climatol. 124, 69–80 (2016).ADS 

Google Scholar 
Alipour, A., Yarahmadi, J. & Mahdavi, M. Comparative study of M5 model tree and artificial neural network in estimating reference evapotranspiration using MODIS products. J. Climatol. 2014, 1–11 (2014).
Google Scholar 
Hassan, M. A., Khalil, A., Kaseb, S. & Kassem, M. A. Exploring the potential of tree-based ensemble methods in solar radiation modeling. Appl. Energy 203, 897–916 (2017).
Google Scholar 
Fan, J. et al. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric. For. Meteorol. 263, 225–241 (2018).ADS 

Google Scholar 
Francke, T., López-Tarazón, J. A. & Schröder, B. Estimation of suspended sediment concentration and yield using linear models, random forests and quantile regression forests. Hydrol. Process. Int. J. 22, 4892–4904 (2008).ADS 

Google Scholar 
Feng, Y., Cui, N., Gong, D., Zhang, Q. & Zhao, L. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agric. Water Manage. 193, 163–173 (2017).
Google Scholar 
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).ADS 
CAS 
PubMed 

Google Scholar 
Zhao, Z., Chen, W., Wu, X., Chen, P. C. Y. & Liu, J. LSTM network: A deep learning approach for short-term traffic forecast. IET Intell. Transp. Syst. 11, 68–75 (2017).
Google Scholar 
Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017).
Google Scholar 
Wang, Z., Yan, W. & Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In 2017 International Joint Conference on Neural Networks (IJCNN), 1578–1585 (IEEE, 2017).Lee, H., Pham, P., Largman, Y. & Ng, A. Unsupervised feature learning for audio classification using convolutional deep belief networks. Adv. Neural Inf. Process. Syst. 22, 1096–1104 (2009).
Google Scholar 
Gao, Y., Hendricks, L. A., Kuchenbecker, K. J. & Darrell, T. Deep learning for tactile understanding from visual and haptic data. In 2016 IEEE International Conference on Robotics and Automation (ICRA), 536–543 (IEEE, 2016).Liu, J. N. K., Hu, Y., You, J. J. & Chan, P. W. Deep neural network based feature representation for weather forecasting. In Proc. International Conference on Artificial Intelligence (ICAI), 1 (The Steering Committee of The World Congress in Computer Science, Computer, 2014).Koprinska, I., Wu, D. & Wang, Z. Convolutional neural networks for energy time series forecasting. In 2018 International Joint Conference on Neural Networks (IJCNN), 1–8 (IEEE, 2018).Biazar, S. M., Ghorbani, M. A. L. I. & Shahedi, K. Uncertainty of artificial neural networks for daily evaporation prediction (case study: Rasht and Manjil Stations). J. Watershed Manage. Res. 10, 1–12 (2019).
Google Scholar 
Shaaban, A. J. & Low, K. S. Droughts in Malaysia: A look at its characteristics, impacts, related policies and management strategies. In Water and Drainage 2003 Conference, 28–29 (2003).Yaseen, Z. M., El-Shafie, A., Jaafar, O., Afan, H. A. & Sayl, K. N. Artificial intelligence based models for stream-flow forecasting: 2000–2015. J. Hydrol. 530, 829–844 (2015).ADS 

Google Scholar 
Abed, M., Imteaz, M. A., Ahmed, A. N. & Huang, Y. F. Application of long short-term memory neural network technique for predicting monthly pan evaporation. Sci. Rep. 11, 1–19 (2021).
Google Scholar 
Freedman, D., Pisani, R., Purves, R. & Adhikari, A. Statistics (2007).Hauke, J. & Kossowski, T. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficient on the Same Sets of Data (2011).Dalkiliç, Y., Okkan, U. & Baykan, N. Comparison of different ANN approaches in daily pan evaporation prediction. J. Water Resour. Prot. 6, 319 (2014).
Google Scholar 
Wang, L., Kisi, O., Zounemat-Kermani, M. & Gan, Y. Comparison of six different soft computing methods in modeling evaporation in different climates. Hydrol. Earth Syst. Sci. Discuss. https://doi.org/10.5194/hess-2016-247 (2016).Zakaria, M. N. A., Malek, M. A., Zolkepli, M. & Ahmed, A. N. Application of artificial intelligence algorithms for hourly river level forecast: A case study of Muda River, Malaysia. Alexand. Eng. J. 60, 4015–4028 (2021).
Google Scholar 
Rosenberry, D. O., Stannard, D. I., Winter, T. C. & Martinez, M. L. Comparison of 13 equations for determining evapotranspiration from a prairie wetland, Cottonwood Lake area, North Dakota, USA. Wetlands 24, 483–497 (2004).
Google Scholar 
Stephens, J. C. & Stewart, E. H. A comparison of procedures for computing evaporation and evapotranspiration. Publication 62, 123–133 (1963).
Google Scholar 
Thornthwaite, C. W. An approach toward a rational classification of climate. Geogr. Rev. 38, 55–94 (1948).
Google Scholar 
Liaw, A. & Wiener, M. Classification and regression by Random Forest. R News 2, 18–22 (2002).
Google Scholar 
Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001).MATH 

Google Scholar 
Peters, J. et al. Random forests as a tool for ecohydrological distribution modelling. Ecol. Modell. 207, 304–318 (2007).
Google Scholar 
Wang, Z. et al. Flood hazard risk assessment model based on random forest. J. Hydrol. 527, 1130–1141 (2015).
Google Scholar 
Ouedraogo, I., Defourny, P. & Vanclooster, M. Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale. Hydrogeol. J. 27, 1081–1098 (2019).ADS 
CAS 

Google Scholar 
Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann machines. In Icml (2010).LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).
Google Scholar 
Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377 (2018).ADS 

Google Scholar 
Volpi, M. & Tuia, D. Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55, 881–893 (2016).ADS 

Google Scholar 
Springenberg, J. T., Dosovitskiy, A., Brox, T. & Riedmiller, M. Striving for simplicity: The all convolutional net. Preprint at http://arXiv.org/1412.6806 (2014).Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. Preprint at http://arXiv.org/1412.6980 (2014).Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106, 7183–7192 (2001).ADS 

Google Scholar 
Change, I. C. The physical science basis. In Contrib. Work. Gr. I to Fourth Assess. Rep. Intergov. Panel Clim. Change, Vol. 996 (2007).Majhi, B., Naidu, D., Mishra, A. P. & Satapathy, S. C. Improved prediction of daily pan evaporation using deep-LSTM model. Neural Comput. Appl. 32, 7823–7838 (2020).
Google Scholar 
Abed, M., Imteaz, M. & Ali Najah Ahmed, Y. F. H. Improved prediction of monthly pan evaporation utilising support vector machine technique. In The Asia-Pacific Conference on Computer Science and Data Engineering 2021 (IEEE).
Source: https://www.nature.com/articles/s41598-022-17263-3