Breaking News

Machine learning in project analytics: a data-driven framework and case study | Scientific Reports – Nature.com

Venkrbec, V. & Klanšek, U. In: Advances and Trends in Engineering Sciences and Technologies II 685–690 (CRC Press, 2016).
Google Scholar 
Damnjanovic, I. & Reinschmidt, K. Data Analytics for Engineering and Construction Project Risk Management (Springer, 2020).Book 

Google Scholar 
Singh, H. Project Management Analytics: A Data-driven Approach to Making Rational and Effective Project Decisions (FT Press, 2015).
Google Scholar 
Frame, J. D. & Chen, Y. Why Data Analytics in Project Management? (Auerbach Publications, 2018).Book 

Google Scholar 
Ong, S. & Uddin, S. Data Science and Artificial Intelligence in Project Management: The Past, Present and Future. J. Mod. Proj. Manag. 7, 26–33 (2020).
Google Scholar 
Bilal, M. et al. Investigating profitability performance of construction projects using big data: A project analytics approach. J. Build. Eng. 26, 100850 (2019).Article 

Google Scholar 
Radziszewska-Zielina, E. & Sroka, B. Planning repetitive construction projects considering technological constraints. Open Eng. 8, 500–505 (2018).Article 

Google Scholar 
Neely, A. D., Adams, C. & Kennerley, M. The Performance Prism: The Scorecard for Measuring and Managing Business Success (Prentice Hall Financial Times, 2002).
Google Scholar 
Kanakaris, N., Karacapilidis, N., Kournetas, G. & Lazanas, A. In: International Conference on Operations Research and Enterprise Systems. 135–155 Springer.Jordan, M. I. & Mitchell, T. M. Machine learning: Trends, perspectives, and prospects. Science 349, 255–260 (2015).ADS 
MathSciNet 
CAS 
PubMed 
MATH 
Article 

Google Scholar 
Shalev-Shwartz, S. & Ben-David, S. Understanding Machine Learning: From Theory to Algorithms (Cambridge University Press, 2014).MATH 
Book 

Google Scholar 
Rahimian, F. P., Seyedzadeh, S., Oliver, S., Rodriguez, S. & Dawood, N. On-demand monitoring of construction projects through a game-like hybrid application of BIM and machine learning. Autom. Constr. 110, 103012 (2020).Article 

Google Scholar 
Sanni-Anibire, M. O., Zin, R. M. & Olatunji, S. O. Machine learning model for delay risk assessment in tall building projects. Int. J. Constr. Manag. 22, 1–10 (2020).
Google Scholar 
Cong, J. et al. A machine learning-based iterative design approach to automate user satisfaction degree prediction in smart product-service system. Comput. Ind. Eng. 165, 107939 (2022).Article 

Google Scholar 
Li, F., Chen, C.-H., Lee, C.-H. & Feng, S. Artificial intelligence-enabled non-intrusive vigilance assessment approach to reducing traffic controller’s human errors. Knowl. Based Syst. 239, 108047 (2021).Article 

Google Scholar 
Mohri, M., Rostamizadeh, A. & Talwalkar, A. Foundations of Machine Learning (MIT press, 2018).MATH 

Google Scholar 
Whyte, J., Stasis, A. & Lindkvist, C. Managing change in the delivery of complex projects: Configuration management, asset information and ‘big data’. Int. J. Proj. Manag. 34, 339–351 (2016).Article 

Google Scholar 
Zangeneh, P. & McCabe, B. Ontology-based knowledge representation for industrial megaprojects analytics using linked data and the semantic web. Adv. Eng. Inform. 46, 101164 (2020).Article 

Google Scholar 
Akinosho, T. D. et al. Deep learning in the construction industry: A review of present status and future innovations. J. Build. Eng. 32, 101827 (2020).Article 

Google Scholar 
Soman, R. K., Molina-Solana, M. & Whyte, J. K. Linked-Data based constraint-checking (LDCC) to support look-ahead planning in construction. Autom. Constr. 120, 103369 (2020).Article 

Google Scholar 
Soman, R. K. & Whyte, J. K. Codification challenges for data science in construction. J. Constr. Eng. Manag. 146, 04020072 (2020).Article 

Google Scholar 
Soman, R. K. & Molina-Solana, M. Automating look-ahead schedule generation for construction using linked-data based constraint checking and reinforcement learning. Autom. Constr. 134, 104069 (2022).Article 

Google Scholar 
Shi, F., Soman, R. K., Han, J. & Whyte, J. K. Addressing adjacency constraints in rectangular floor plans using Monte-Carlo tree search. Autom. Constr. 115, 103187 (2020).Article 

Google Scholar 
Chen, L. & Whyte, J. Understanding design change propagation in complex engineering systems using a digital twin and design structure matrix. Eng. Constr. Archit. Manag. (2021).Allison, J. T. et al. Artificial intelligence and engineering design. J. Mech. Des. 144, 020301 (2022).Article 

Google Scholar 
Dutta, D. & Bose, I. Managing a big data project: The case of ramco cements limited. Int. J. Prod. Econ. 165, 293–306 (2015).Article 

Google Scholar 
Bilal, M. & Oyedele, L. O. Guidelines for applied machine learning in construction industry—A case of profit margins estimation. Adv. Eng. Inform. 43, 101013 (2020).Article 

Google Scholar 
Tayefeh Hashemi, S., Ebadati, O. M. & Kaur, H. Cost estimation and prediction in construction projects: A systematic review on machine learning techniques. SN Appl. Sci. 2, 1–27 (2020).Article 

Google Scholar 
Arage, S. S. & Dharwadkar, N. V. In: International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC). 594–599 (IEEE, 2017).Cheng, C.-H., Chang, J.-R. & Yeh, C.-A. Entropy-based and trapezoid fuzzification-based fuzzy time series approaches for forecasting IT project cost. Technol. Forecast. Soc. Chang. 73, 524–542 (2006).Article 

Google Scholar 
Joukar, A. & Nahmens, I. Volatility forecast of construction cost index using general autoregressive conditional heteroskedastic method. J. Constr. Eng. Manag. 142, 04015051 (2016).Article 

Google Scholar 
Xu, J.-W. & Moon, S. Stochastic forecast of construction cost index using a cointegrated vector autoregression model. J. Manag. Eng. 29, 10–18 (2013).Article 

Google Scholar 
Narbaev, T. & De Marco, A. Combination of growth model and earned schedule to forecast project cost at completion. J. Constr. Eng. Manag. 140, 04013038 (2014).Article 

Google Scholar 
Naeni, L. M., Shadrokh, S. & Salehipour, A. A fuzzy approach for the earned value management. Int. J. Proj. Manag. 29, 764–772 (2011).Article 

Google Scholar 
Ponz-Tienda, J. L., Pellicer, E. & Yepes, V. Complete fuzzy scheduling and fuzzy earned value management in construction projects. J. Zhejiang Univ. Sci. A 13, 56–68 (2012).Article 

Google Scholar 
Yu, F., Chen, X., Cory, C. A., Yang, Z. & Hu, Y. An active construction dynamic schedule management model: Using the fuzzy earned value management and BP neural network. KSCE J. Civ. Eng. 25, 2335–2349 (2021).Article 

Google Scholar 
Bonato, F. K., Albuquerque, A. A. & Paixão, M. A. S. An application of earned value management (EVM) with Monte Carlo simulation in engineering project management. Gest. Produção 26, e4641 (2019).Article 

Google Scholar 
Batselier, J. & Vanhoucke, M. Empirical evaluation of earned value management forecasting accuracy for time and cost. J. Constr. Eng. Manag. 141, 05015010 (2015).Article 

Google Scholar 
Yang, R. J. & Zou, P. X. Stakeholder-associated risks and their interactions in complex green building projects: A social network model. Build. Environ. 73, 208–222 (2014).Article 

Google Scholar 
Uddin, S. Social network analysis in project management–A case study of analysing stakeholder networks. J. Mod. Proj. Manag. 5, 106–113 (2017).
Google Scholar 
Ong, S. & Uddin, S. Co-evolution of project stakeholder networks. J. Mod. Proj. Manag. 8, 96–115 (2020).
Google Scholar 
Khanzode, K. C. A. & Sarode, R. D. Advantages and disadvantages of artificial intelligence and machine learning: A literature review. Int. J. Libr. Inf. Sci. (IJLIS) 9, 30–36 (2020).
Google Scholar 
Loyola-Gonzalez, O. Black-box vs. white-box: Understanding their advantages and weaknesses from a practical point of view. IEEE Access 7, 154096–154113 (2019).Article 

Google Scholar 
Abioye, S. O. et al. Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. J. Build. Eng. 44, 103299 (2021).Article 

Google Scholar 
Doloi, H., Sawhney, A., Iyer, K. & Rentala, S. Analysing factors affecting delays in Indian construction projects. Int. J. Proj. Manag. 30, 479–489 (2012).Article 

Google Scholar 
Alkhaddar, R., Wooder, T., Sertyesilisik, B. & Tunstall, A. Deep learning approach’s effectiveness on sustainability improvement in the UK construction industry. Manag. Environ. Qual. Int. J. 23, 126–139 (2012).Article 

Google Scholar 
Gondia, A., Siam, A., El-Dakhakhni, W. & Nassar, A. H. Machine learning algorithms for construction projects delay risk prediction. J. Constr. Eng. Manag. 146, 04019085 (2020).Article 

Google Scholar 
Witten, I. H. & Frank, E. Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, 2005).MATH 

Google Scholar 
Kanakaris, N., Karacapilidis, N. I. & Lazanas, A. In: ICORES. 362–369.Heo, S., Han, S., Shin, Y. & Na, S. Challenges of data refining process during the artificial intelligence development projects in the architecture engineering and construction industry. Appl. Sci. 11, 10919 (2021).CAS 
Article 

Google Scholar 
Bross, I. D. How to use ridit analysis. Biometrics 14, 18–38 (1958).Article 

Google Scholar 
Uddin, S., Khan, A., Hossain, M. E. & Moni, M. A. Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 19, 1–16 (2019).Article 

Google Scholar 
LaValle, S. M., Branicky, M. S. & Lindemann, S. R. On the relationship between classical grid search and probabilistic roadmaps. Int. J. Robot. Res. 23, 673–692 (2004).Article 

Google Scholar 
Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2, 433–459 (2010).Article 

Google Scholar 
Saxena, A. Survey on Road Construction Delay, https://www.kaggle.com/amansaxena/survey-on-road-construction-delay (2021).Noble, W. S. What is a support vector machine?. Nat. Biotechnol. 24, 1565–1567 (2006).CAS 
PubMed 
Article 

Google Scholar 
Hosmer, D. W. Jr., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression Vol. 398 (John Wiley & Sons, 2013).MATH 
Book 

Google Scholar 
LaValley, M. P. Logistic regression. Circulation 117, 2395–2399 (2008).PubMed 
Article 

Google Scholar 
Menard, S. Applied Logistic Regression Analysis Vol. 106 (Sage, 2002).Book 

Google Scholar 
Batista, G. E. & Monard, M. C. A study of K-nearest neighbour as an imputation method. His 87, 48 (2002).
Google Scholar 
Agatonovic-Kustrin, S. & Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22, 717–727 (2000).CAS 
PubMed 
Article 

Google Scholar 
Zupan, J. Introduction to artificial neural network (ANN) methods: What they are and how to use them. Acta Chim. Slov. 41, 327–327 (1994).CAS 

Google Scholar 
Hopfield, J. J. Artificial neural networks. IEEE Circuits Devices Mag. 4, 3–10 (1988).Article 

Google Scholar 
Zou, J., Han, Y. & So, S.-S. Overview of artificial neural networks. Artificial Neural Networks. 14–22 (2008).Maind, S. B. & Wankar, P. Research paper on basic of artificial neural network. Int. J. Recent Innov. Trends Comput. Commun. 2, 96–100 (2014).
Google Scholar 
Wolpert, D. H. Stacked generalization. Neural Netw. 5, 241–259 (1992).Article 

Google Scholar 
Pavlyshenko, B. In: IEEE Second International Conference on Data Stream Mining & Processing (DSMP). 255–258 (IEEE).Jović, A., Brkić, K. & Bogunović, N. In: 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). 1200–1205 (Ieee, 2015).Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002).MATH 
Article 

Google Scholar 
Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).MathSciNet 
MATH 

Google Scholar 
Louppe, G., Wehenkel, L., Sutera, A. & Geurts, P. Understanding variable importances in forests of randomized trees. Adv. Neural. Inf. Process. Syst. 26, 431–439 (2013).
Google Scholar 
Al-Hazim, N., Salem, Z. A. & Ahmad, H. Delay and cost overrun in infrastructure projects in Jordan. Procedia Eng. 182, 18–24 (2017).Article 

Google Scholar 
Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).Article 
MATH 

Google Scholar 
Shehu, Z., Endut, I. R. & Akintoye, A. Factors contributing to project time and hence cost overrun in the Malaysian construction industry. J. Financ. Manag. Prop. Constr. 19, 55–75 (2014).Article 

Google Scholar 
Akomah, B. B. & Jackson, E. N. Contractors’ perception of factors contributing to road project delay. Int. J. Constr. Eng. Manag. 5, 79–85 (2016).
Google Scholar 
GitHub: Where the world builds software, https://github.com/.Anbari, F. T. Earned value project management method and extensions. Proj. Manag. J. 34, 12–23 (2003).Article 

Google Scholar 
Acebes, F., Pereda, M., Poza, D., Pajares, J. & Galán, J. M. Stochastic earned value analysis using Monte Carlo simulation and statistical learning techniques. Int. J. Proj. Manag. 33, 1597–1609 (2015).Article 

Google Scholar 
Japkowicz, N. & Stephen, S. The class imbalance problem: A systematic study. Intell. data anal. 6, 429–449 (2002).MATH 
Article 

Google Scholar 
Chen, T. et al. Xgboost: extreme gradient boosting. R Packag. Version 0.4–2.1 1, 1–4 (2015).
Google Scholar 
Guarino, A., Lettieri, N., Malandrino, D., Zaccagnino, R. & Capo, C. Adam or Eve? Automatic users’ gender classification via gestures analysis on touch devices. Neural Comput. Appl. 1–23 (2022).Zaccagnino, R., Capo, C., Guarino, A., Lettieri, N. & Malandrino, D. Techno-regulation and intelligent safeguards. Multimed. Tools Appl. 80, 15803–15824 (2021).Article 

Google Scholar 

Source: https://www.nature.com/articles/s41598-022-19728-x